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Abstract  

Most of the biometric signals are naturally multi-dimensional objects, which are formally 

known as tensors. There is an increasing interest in the multilinear subspace analysis and many 

methods have been proposed to operate directly on these tensorial data during the past several 

years. One of these popular unsupervised multilinear algorithms is Multilinear Principal 

Component Analysis (MPCA) while another of the supervised multilinear algorithm is 

Multilinear Discriminant Analysis (MDA). Then a MPCA+MDA method has been introduced to 

deal with the tensorial signal and a better recognition accuracy can be obtained. However, due to 

the no convergence of MDA, it is difficult for MPCA+MDA to obtain a precise result. Hence, to 

overcome this limitation, a new MPCA plus General Tensor Discriminant Analysis (GTDA) 

solution with well convergence is presented for tensorial biometric signal feature extraction in 

this paper. Several experiments are carried out to evaluate the performance of MPCA+GTDA on 

different databases and the results show that this method has the potential to achieve comparative 

effect as MPCA+MDA. In addition, some basic issues of GTDA such as initialization conditions, 

convergence and space dimension determination which have not been described clearly before 

are also discussed in detail in this paper. 
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1. Introduction 

Feature extraction or dimensionality reduction lies at the heart of several aspects of subspace 

learning techniques and has attracted growing interest over the past several years. The goal of 

these methods is to transform a high-dimensional data set into a low-dimensional equivalent 

representation, while keeping most of the information consistent with the underlying structure of 

the actual physical phenomenon [1]. Most biometric signals have multi-dimensional 

representation. For example, two-dimensional biometric signals include gray-level images of 

fingerprint, palm print, ear, face, and multichannel electroencephalography signals in 

neuroscience. Three-dimensional data include color biometric images, Gabor faces, silhouette 

sequences in gait analysis, and gray video sequences in action recognition. A few multi-

dimensional biometric signals can also be formed in more than three orders, such as color video 

sequence surveillance [2]. Tensor provides a natural and efficient way to describe that multi-

dimensional data, such as vectors, are first-order tensors, whereas matrices are second-order 

tensors. The elements of a tensor are to be addressed by a number of indices that are used to 

define the order of the tensor object. Notably, each index defines a “mode” [3] 

Principal component analysis (PCA) [4] and linear discriminative analysis (LDA) [5] are 

two of the most popular classical subspace learning methods among several existing 

dimensionality reduction algorithms. PCA seeks an optimal projection direction of maximal 

variation while disregarding the label information of samples. By contrast, LDA is a supervised 

method that searches for the optimal discriminative subspace by maximizing the ratio between 

the between-class scatter and the within-class scatter. Another widely used dimensionality 

reduction algorithm [6] is proposed, which is a linear extension of Laplacian eigenmaps [7], 

namely, locality preserving projections (LPP). LPP aims to preserve the local structure of the 

original space, whereas PCA and LDA aim to preserve global structures of the samples. 

However, tensors must be reshaped into vectors first before these linear subspace learning 

methods can be applied on tensor data. Such reshaping generally has two fundamental 

limitations: high computational burden and a loss of the potential spatial structure information of 

the original data. To overcome these shortcomings, some researchers have attempted to treat the 

second-order data as a matrix instead of a vector, such as 2DPCA [8], 2DLDA [9], and 2DLPP 

[10]. Although such methods effectively deal with second-order data, such as image classification 

and face recognition, these methods no longer obtain better results when faced with higher-order 
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data. Therefore, several multilinear algorithms, which can directly operate on the original 

tensorial data without the limitation of order, have been proposed. 

Multilinear principal component analysis (MPCA) [11], a tensor version of PCA, performs 

dimensionality reduction in all tensor modes to capture most variations presented in the original tensors. 

Several researchers have attempted to extend other conventional transformation approaches for tensor use. 

For example, by using high order singular value decomposition (HOSVD), the following multilinear 

algorithms, multilinear discriminant analysis (MDA) [12], general tensor discriminant analysis (GTDA) 

[13], and tensor subspace analysis (TSA) [14] applied LDA, maximum scatter difference (MSD) [15], and 

LPP, respectively, to transform each mode of the tensors. Moreover, to obtain better accuracy, a new 

method based on MPCA+MDA for face recognition has been proposed in reference [16]-[18]. In that 

paper, MPCA was implemented on the tensorial data for dimensionality reduction, and a new data set with 

a new dimension was generated. This new data set will be the inputs for the MDA algorithm to learn the 

most discriminative subspaces of the input samples. Given the use of MDA after applying the MPCA, this 

method is performed in a much lower-dimension feature space than the traditional methods, such as LDA 

and PCA, and it can overcome the small sample size problem [19]. However, like 2DLDA, the MDA 

algorithm does not converge [11], because the optimization algorithm applied to MDA fails to converge. 

Considering the instability, achieving a stable and precise accuracy is difficult for MDA. 

Given the converged alternating projection, GTDA can provide stable recognition accuracy, whereas 

MDA cannot. By maximizing the between-class variance and minimizing the within-classes variance, 

GTDA decomposes tensors into core tensors and a series of discriminative matrices over every modality 

[20], similar to MDA. Moreover, empirical analysis on tensorial samples [21] indicates that GTDA can 

achieve results comparable to those of MDA. Consequently, GTDA can be used in this study to transform 

multilinear discriminative subspace from high-dimensional and high-order biometric signals. On the basis 

of the works briefly reviewed above, we introduce a new MPCA+GTDA algorithm to deal with tensorial 

data instead of MPCA+MDA, and expect this novel method to be a better choice. Considering that MPCA 

and GTDA are multilinear algorithms, lower dimensionality dilemma and better correct recognition rate 

can be captured. To the best of our knowledge, this study is the first to employ MPCA+GTDA on feature 

extraction and dimensionality reduction for tensor objects. Several issues caused by the iterative nature of 

the GTDA algorithm are also addressed in this paper. 

The rest of the paper is organized as follows: Section 2 provides a brief introduction of 

multilinear algebra for dimensionality reduction. The algorithm of MPCA and GTDA are initially 

summarized and discussed in detail, and then a few aspects of GTDA such as initialization 

conditions, and termination criteria are discussed in section 3. We analyze experiment results on 

several databases to verify the properties of the proposed method and compare its performance 
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with those of other algorithms in Section 4. The major findings and conclusions are presented in 

Section 5. 

 

2. Tensor Fundamentals 

Before discussing the MPCA and GTDA algorithms, introducing a few basic multilinear 

operations is necessary. Then, multilinear tensor-to-tensor projection (TTP) is described for 

dimensionality reduction and feature extraction from tensor objects. Finally, a typical TTP-based 

multilinear subspace learning algorithm is described in Section 2.3. 

2.1 Notations and Basic Multilinear Algebra 

The notation in this chapter follows the conventions in the multilinear algebra, such as the 

notation in [22]. Vectors are denoted by lowercase boldface letters, e.g., x; matrices by uppercase 

boldface, e.g., U; and tensors by calligraphic letters, e.g., . An Nth-order tensor is denoted as 

. Their elements are addressed by N indices ,  , and each  

addresses the n-mode of . 

The n-mode unfolding of  is defined as the  dimensional vectors are denoted as 

                                                                                                 (1) 

Where the column vectors of  are gained from  by varying its index  while keeping all the 

other indices fixed. Fig.1 (a)-(e) provides a visual illustration of a 3-order tensor  where 1-

mode corresponds to the column vector, see Fig.1(b);  2-mode corresponds to row vector, see Fig.1(c); 3-

mode corresponds to the depth vector, see Fig.1(d); and 1-mode matricization of , see Fig.1(e). 
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Fig.1. Illustration of the n-mode vectors: (a) a tensor , (b) the 1-mode vectors, (c) the 

2-mode vectors, (d) the 3-mode vectors, and (e) 1-mode unfolding of a third-order tensor. 

 

The n-mode product of a tensor  by a matrix , denoted by , is a tensor 

defined as 

                                       (2) 

In Fig.2, a third-order tensor  is projected in the 1-mode vector space by a 

projection matrix , resulting in the projected tensor . 
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Fig.2. Example of the n-mode (1-mode) multiplication. 
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One of the most commonly used tensor decompositions is Tucker, which can be regarded as 

higher-order generalization of the matrix singular value decomposition (SVD). Let 

 denotes an Nth-order tensor, then the Tucker decomposition is defined as 

follows 

                                                                                                         (3)  

Where  with , denotes the core tensor and  is 

an  matrix. The Tucker decomposition is illustrated in Fig.3. When all  are 

orthonormal and the core tensor is all orthogonal, this model is called HOSVD [23]. 
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Fig.3. Visualisation of the decomposition of tensor into 3 subspace matrices and a core tensor. 

 

The scalar product of two tensors  is defined as 

                                                                  (4) 

The Frobenius norm of  is defined as 

                                                 (5) 

 

2.2 Tensor-to-Tensor Projection 

The dimension reduction of biometric signals in this paper is applied during multilinear 

projection from a tensor space to another tensor space, namely TTP. TTP is formulated based on 

the Tucker decomposition, the projection framework was first introduced in [24] [25]. To project 

an Nth-order tensor   in a tensor space , to another tensor  in a lower-
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dimensional tensor space , where  for all n, N projection matrices  are 

utilized 

                                                                                         (6) 

These N projection matrices used for TTP can be concisely written as . Fig.4 shows 

the TTP of a tensor sample  to a smaller tensor of size  . 
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Fig.4. Illustration of tensor-to tensor projection. 

 

2.3 Multilinear Subspace Learning Algorithms Based on TTP 

TTP method has been solved to develop several multilinear algorithms, including MPCA, 

MDA, and GTDA. N sets of parameters for N projection matrices to be solved (one in each 

mode) during a TTP in multilinear subspace learning (MSL). An iterative procedure called 

alternating partial projections (APP), which originated from the alternating least squares 

algorithm [26], is commonly organized to solve for tensor-based projections that alternate with 

partial projections. Given the iterative nature of the solution, issues such as initialization, 

termination, and convergence need to be determined in MSL. According to the projection 

matrices in all the other modes ( ), the mode-n projection matrix is solved one by one. The 

mode-n partial multilinear projection of a tensor  in TTP using  is written as 

                               (7) 

In addition, for TTP-based MSL, testing all the possible combinations of the N values, , , , 

, for a desired amount of dimensionality reduction is often costly. Thus, the desired subspace 

dimensions  for this approach need to be predetermined [27]. 

Typical algorithmic procedures for TTP-based MSL algorithms are shown in Algorithm 1. 
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Algorithm 1 A typical TTP-based multilinear subspace learning algorithm 

INPUT: a series of Nth order tensors  

OUTPUT: N matrices  

Algorithm: 

1: Initialize  with a set of identity matrices 

2: Local optimization 

for  

    for  

            for m=1 to M do 

            Calculate Equation (7) to get the mode-n partial multilinear projection 

of input tensors. 

            Solve for the mode-n unfolding matrix of . 

         end for 

        Solve for the mode-n  as a linear problem obtained through the 

mode-n unfolding matrix of . 

    end for 

If the algorithm converges or a maximum number of iterations K 

attains, break and output the current .  

end for 

 

3. Multilinear Principal Component Analysis and General Tensor 

Discriminant Analysis 

As a high-order extension of PCA, MPCA is an unsupervised MSL algorithm for general 

tensors that target variation maximization by solving a TTP. As a multilinear extension of MSD, 

GTDA is a supervised MSL algorithm for performing discriminant analysis on general tensor 

inputs by also solving a TTP. Motivated by Fisherface [5] and the MPCA+MDA algorithm, we 

use MPCA algorithm for tensor objects feature extraction and dimension reduction, and then 

apply GTDA on the low dimensionality features. Finally, nearest neighbor (NN) classifier is 

implemented to classify the computed GTDA features. 
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3.1 Multilinear Principal Component Analysis 

In this section, the MPCA algorithm is described in detail based on the analysis introduced 

in [11]. A set of M tensor object samples  are available for training and each 

tensor object . The MPCA objective is the determination of the N projection 

matrices  that maximize the total tensor scatter  

                                                                      (8) 

where  according to Equation (6), . The dimensionality 

 for each mode should be predetermined. 

As discussed in Section 2.3, the N optimization subproblems are solved through the APP 

method by finding the mode-n projection matrix  that maximizes the mode-n total scatter 

conditioned on the projection matrices in all the other modes. Let   be the 

answer to Equation (8), and  be all the other known projection 

matrices, the  eigenvectors reside in the matrix  and correspond to the largest 

eigenvalues of the matrix  

                                                            (9) 

where  is the mode-n unfolding of  and 

                                                (10) 

The projection matrices  are initialized through the full projection truncation (FPT) 

described in [11] and updated one by one with all the others fixed. 
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3.2 General Tensor Discriminant Analysis 

GTDA aims to maximize a multilinear extension of the scatter-difference based discriminant 

criterion in [14]. GTDA intends to solve for a TTP  that 

projects a tensor  to a low-dimensional tensor  . 

A set of M labeled tensor data samples  in  are available 

for training with class label . The class label for the mth sample  is  and 

there are C classes in total. The between-class scatter matrix of these tensors is defined as 

                                                                                                             (11) 

and the within-class scatter of these tensors is defined as 

                                                                                                            (12) 

Where ,  is the number of samples for class c,  is the class label for 

the mth sample , the overall mean tensor  and the class mean tensor 

. The objective function of GTDA can be written as 

                                                                     (13) 

where  is a tuning parameter and is automatically selected during the training procedure 

according to [14]. The APP method is also employed to utilize for the N projection matrices 

iteratively. First the input tensors (that are the outputs of MPCA) should be solved with the 

mode-n projection matrix conditioned on the projection matrices in all the other modes which 

defined in Equation (7), and then all the new tensors are unfolded into a matrix along the nth-

mode. 

The mode-n between-class and within-class scatter matrices can be obtained from  

which is the mode-n unfolding of   

                                                                          (14) 

                                                                    (15) 
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respectively, where  and . 

Following Equation (13), the mode-n projection matrix  in this conditional optimization 

problem are solved as 

  

                                                                    (16) 

This can be treated as an eigenvalue problem and the objective function above is maximized only 

if  consists of the  eigenvectors of the total tensor scatter-difference   

associated with the  largest eigenvalues. 

As described above, similar to MDA, GTDA aims to maximize between-class variation 

while minimizing within-class variation to achieve the best class separability. The only difference 

between the two is that MDA maximizes the ratio of the between-class scatter over the within-

class scatter, whereas GTDA maximizes a tensor-based scatter difference criterion and the 

projection matrices in GTDA have orthonormal columns. 

The advantages of GTDA are as follows: 1) GTDA operates on each modality of training 

tensors independently to reduce the small sample size problem (SSS) [20]. SSS means when the 

number of samples is smaller than the dimensionality of the input samples, the scatter matrix may 

become singular. The inverse of   can’t be computed in MDA under SSS, whereas we don’t 

need to solve the inverse of   in GTDA (see Equation 16), then the SSS problem can be 

avoided. 2) GTDA retains the discriminative information in the training tensors by considering 

the class label information. As a supervised learning algorithm, GTDA extracts the features that 

make class separation as large as possible by maximizing the difference of between-class 

variation and within-class variation of input tensors. 3) The optimization algorithm of GTDA 

converges, and the convergence will be proven in the experiment section. 

Several issues that refer to the development and implementation of GTDA algorithm are 

discussed in the following sections. The initialization method, construction of termination 

criteria, convergence, and dimension issues, which were not described clearly in [14], are 

proposed in the following section. 
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3.3 Initialization, Convergence and Termination of GTDA 

Considering the iterative nature of MSL solutions, initial estimations for the projection 

matrices are necessary at the beginning of the iterative process. Three popular initialization 

methods are commonly used for TTP, namely, pseudo-identity matrices, random matrices, and 

FPT [27]. As the description of GTDA in [14], the projection matrices were initialized simply by 

using pseudo-identity matrices of all ones. In Section 4.1, different initializations have been 

utilized to select the right one to obtain the best result. The empirical studies show that the result 

of GTDA is insignificantly influenced by the different initialization methods. However, different 

choices of initial method can influence the convergence speed for the iterative solution, and the 

FPT method seems better. 

FPT is utilized to initialize the GTDA iterative with the mode-n projection matrix, which is 

achieved by truncating the mode-n full projection matrix. The mode-n full projection matrix 

refers to the multilinear projection for GTDA with  fo . Let  keeping the 

first  eigenvectors of 

                                               (17) 

Where is the n-mode unfolding of input sample ,   is the number for class c,  

and  equal to the overall mean and the class mean of . It is obviously that  is 

obtained by the input samples only and then  is determined as the eigenvectors of it directly 

without iteration. Consequently, FPT, which is faster than the other two initial methods, is 

expected to be a good choice to start the iterations in GTDA. 

Unlike 2DLDA and MDA, the alternating projection optimization procedure for GTDA 

converges. This result is due to the fact that the alternating projection optimization procedure for 

GTDA is a monotonic increasing procedure. Therefore, the total scatter-difference  is a 

nondecreasing function, and the function value is the lower and upper bound by two limiting 

values [14]. As demonstrated in Section 4.1, the proposed GTDA algorithm converges very 

quickly (within four iterations) for face images. 

The total scatter difference function is used to determine the termination criterion. 

Moreover, given that and are the results from the kth and (k − 1)th iterations, if 
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 , the iterative procedure will be terminated. According to the 

experiment results on the convergence of GTDA in Section 4.1, the maximum number of 

iterations K can be set with the number under four without affecting the final results. 

 

3.4 Tensor Subspace Dimension Determination 

The target dimensionality  has to be determined before solving the GTDA 

projection. Q-based method is a simplified dimensionality determination procedure that needs no 

iteration and was first introduced in [11]. The ratio is defined 

                                                                                                                          (18) 

as the remaining portion of the mode-n total scatter difference after truncation of the mode-n 

eigenvectors beyond the th, where  is the th full-projection mode-n eigenvalues. In the Q-

based method, the first  eigenvectors are kept in mode n so that 

. 

The empirical study in [11] indicated that the Q-based method obtains results similar to 

those obtained by sequential mode truncation. Hence, applying the Q-based method on GTDA to 

reduce costly computations is preferred. 

 

3.5 Feature Extraction and Classification Using MPCA Plus GTDA 

In the problem of tensor sample recognition, the input training sample  in 

 is projected through MPCA and GTDA which both use the FPT for 

initialization and use the Q-based method for dimension determination. With the learned 

, a series of tensor  in a low-dimensional tensor space  can 

be obtained with . 

Due to the distance of two samples is identical whether with the form tensor or vector, the 

NN network can be used for the final classification. The distance between two arbitrary feature 

tensors is defined as 

                                                           (19) 
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where the Frobenius norm equals the Euclidean distance. Consider that a set of M tensor feature 

samples  are available for training, and C classes exist in total. The class label for 

the mth samples  is . If a testing feature sample  has 

                                                                  (20) 

then we can judge . Although the classification accuracy is expected to improve if a more 

complicated classifier, such as support vector machine (SVM) [28] or artificial neural network 

(ANN) [29], is applied, NN classifier is preferred in this paper because of the focus is on the 

performance mainly contributed by MPCA + GTDA based feature extraction. 

 

4. Experiments and Discussion 

In this section, several experiments are designed to evaluate the performance of the proposed 

algorithm. The first one uses ORL face database which obtains 400 face images to discuss the 

effects of the initial conditions of GTDA. The following experiments which are carried out on 

gait, and color face databases illustrate the efficacy of the proposed MPCA+GTDA in tensor 

object recognition and compare its performance against state-of-the-art algorithms. 

 

4.1 Initialization of GTDA  on ORL Database 

To study the GTDA properties on biometric data of different characteristics, the ORL 

database with a total of 400 different face images is applied. The gray-level face images from the 

ORL database have a resolution of 112  92, and 40 subjects with 10 images each included in the 

database. Images of individuals have been selected based on different characteristics, such as 

with or without glasses, different facial expressions, and facial details. 

First, the effects of the initial conditions of GTDA are examined by using the face images 

from ORL. The distribution of random matrices initialization is standard normal distribution. 

Next, all three normal initialization methods (random matrices, pseudo-identity matrices, and full 

projection truncation) have been considered. Based on the simulation studies in Fig.5, the 

algorithm converges to the same point (obtaining the same total scatter difference ) within 

four iterations when , despite the different initializations. Furthermore, with a small value 

of Q (= 0.1) for GTDA, the algorithm that uses FPT as initialization converges to a point slightly 

lower than the point that is converged by using the other two initialization methods [Fig.5 (a)]. 
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This result suggested that the initialization method could affect the final results of GTDA on 

biometric data when a small number is used by Q. However, in most cases, most variations or 

energy in original data is needed for application in pattern recognition field, and  can be 

easily satisfied. Considering that GTDA seems insensitive to the choice of initial method with 

, the FPT, which needs no iteration and has a fast calculation speed, is employed for 

initialization in the following work. 
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Fig.5. Convergence plot for GTDA with different initializations: (a) Convergence plot with 

Q=0.1; (b) Convergence plot with Q=0.5; (c) Convergence plot with Q=0.7; (d) Convergence plot 

with Q=0.8. 
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4.2 MPCA Plus GTDA Based Gait Recognition 

Gait video is naturally a third-order tensor with the column, row, and time mode. In this 

subsection, the experiment is conducted on the gait base and the correct classification recognition 

(CCR) is employed to evaluate the performance of algorithms. The gait database we selected is 

one of the USF HumanID “gait challenge” data sets [30] which was used in [11]. The selected 

gait database contains a total of 71 subjects and 731 human gait samples with a size of 

 for preliminary evaluation. An average of roughly 10 samples is selected for each 

subject. The first four samples from each subject (284 in total) are used for training, and the 

remaining 447 samples are used for testing. In this test, we use the first P numbers of the 

extracted features from each mode of the training samples to calculate the performance of each 

method. The scale of P is from 2 to 10, and the best recognition results are shown in bold. The 

CCR of MPCA+GTDA, MPCA, and GTDA on gait recognition increases as the number of 

extracted features increases (Fig.6). This monotonicity is due to the convergence of MPCA and 

GTDA. By contrast, the curves of MDA and MPCA+MDA demonstrate the instability of MDA. 

Moreover, applying GTDA after MPCA can obtain higher CCR than using MPCA only for 

feature extraction. 
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Fig.6. The CCR over dimensions of feature on the gait database. 

4.3 MPCA Plus GTDA Based Color Face Recognition 

Color facial images in the RGB color space can be viewed as third-order objects with 

column, row, and color modes [31]. Let an RGB image of size  be represented as a tensor 

, where the mode-3 of  is the color variables that correspond to R, G, and B with 
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 [32] (see Fig.7). Several algorithms have been proposed to deal with the color images as 

tensor objects. For example, tensor discriminant color space (TDCS) [32] seeks two discriminant 

transformation matrices ,  that correspond to facial spatial information and one color space 

projection matrix  corresponding to the color space. In fact, TDCS applies LDA transformation 

on each mode of the third-order color image similar to MDA. In [33], fusion tensor subspace 

transformation (FTSA) which applies LDA on the facial spatial information and applies 

independent color analysis (ICA) on the color space information, is proposed. Considering the 

small dimension of mode-3 ( ), applying dimensionality reduction on the mode-3 of input 

tensor  seems unnecessary. To study the performance of the proposed MPCA+GTDA method 

in the color face database, we initially apply MPCA on the mode-1 and mode-2 of color images 

to reduce the dimensionality of the facial spatial information. Then, GTDA is used for all modes 

of the processed third-order tensor. For a color face data , the proposed method 

aims to seek two linear projection matrices ,  and a color transformation 

matrix  ( ) for calculation 

                                                                                                         (21) 

where  and  are gained by applying MPCA plus GTDA,  is achieved by using GTDA. 
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Fig.7. Illustration of color component image. 
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We conducted the experiment on the widely used color face database AR [34]. The AR color 

face database consists of over 4000 color facial images of 126 people. In this test, 1400 face 

images from 100 people (50 women and 50 men) were selected. These images are selected with 

different facial expressions (open/closed eyes, smiling/not smiling, open/closed mouth) and facial 

details (glasses/no glasses). There are no restrictions on wear, hair style, occlusion, etc. All color 

face images are manually cropped to  pixels. Figure 8 depicts sample face images 

from one individual in this AR database.  Like FERET database, 7 images were randomly 

selected from each subject to form the training set and the remaining images were used for 

testing. We calculated the average recognition rate by over ten such random repetitions. 

 

Fig.8. Example images of one individual in AR database 

 

In this experiment, we trained MPCA+GTDA, MPCA+MDA, GTDA, MDA, and MPCA. 

The transformation matrices  and  were initialized by FPT and  was initialized by a 

matrix of all s. The maximum number of iterations K was set to be three. Figure 9 

shows the recognition rates versus the variations of the dimensions. Again, MPCA+GTDA and 

MPCA+MDA perform better than the other methods on the color face database and the 

recognition rates of MPCA+GTDA and MPCA+MDA are quite similar. Therefore, the proposed 

MPCA+GTDA algorithm can improve the performance on tensorial signal recognition. 
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Fig.9. The recognition rates versus the dimension on the AR database. 

 

5. Conclusion 

This paper proposed a new MPCA+GTDA framework to supervise dimensionality reduction 

in tensorial biometric signal. This algorithm overcomes the limitation of MPCA+MDA and 

captures better convergence and recognition accuracy. Moreover, a few fundamental issues of 

GTDA, including initialization, termination, and dimension determination, are discussed in detail. 

The experimental results of the comparison with the state-of-the-art algorithms indicated that the 

MPCA+GTDA method is a promising tool for biometric signal in research and applications. 
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